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What is a Microgrid?
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A group of interconnected loads and distributed energy resources within
clearly defined electrical boundaries that acts as a single controllable entity
with respect to the grid.

A microgrid can connect and disconnect from the grid to enable it to

operate in both grid-connected or island mode.
Microgrid Exchange Group — 06 Oct 2010
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Microgrid Importance
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@ Microgrids provide the most promising means of integrating large
amounts of distributed sources into the power grid.

« Particularly important for renewable energy sources

@ Microgrids can provide higher reliability, energy security and surety,

and open the door to significant system efficiency improvements using
Combined Heating & Power (CHP).
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Technical Drives Behind Microgrids

@ Transmission constraints requiring supplies
closer to loads

@ Demand for improved power reliability,
efficiency, and quality

@ Demand for energy security
@ Integration of renewable energy and DG

@ Military demand for enhanced energy security:
Surety, Survivability, Supply, Sufficiency, and
Sustainability.
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Economical Drives Behind Microgrids

@ Installed solar PV cost 1s estimated to fall to
$1/W by 2015, making it competitive with
natural gas. It is already down to $1.5/W!

@ Natural gas has become as cheap as coal and 1s
taking away the cost advantage of centralized
coal plants.

@ Cost of energy storage 1s falling dramatically
and will reach $100/kW in coming years.
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700 kW Fort Sill Microgrid Project
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SPIDERS: The Smart Power Infrastructure
Demonstration for Energy Reliability and

Security
$30M project focused on three distinct military installations: Joint Base
Pearl Harbor/Hickam, Hawaii; Fort Carson, Colorado; and Camp H.M.
Smith, Hawaii.
e To protect critical infrastructure from power loss in the event of physical
or cyber disruptions to the bulk electric grid.

e To provide reliable backup power during emergencies by integrating
renewables and other distributed generation sources into the microgrid.

e To ensure that critical operations can be sustained during prolonged utility
power outages.

e To manage electrical power and consumption at military installations
more efficiently, thus reducing petroleum demand, carbon emissions, and
transportation costs.
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SPIDERS Microgrid Implementation |
Plan

The goal of SPIDERS is to

demonstrate a secure microgrid

concept

e Maintaining 100 percent of
critical load for at least 72 hours
in the event of loss of grid
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e Integrating intermittent
renewable energy generation » TempLATE For DoD-wipe
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Current pgrid Technology Base (cont d)
@ 100 kW AEP/CERTS Microgrid Test Site

- Seamless transfer, peer-to-peer and plug-and play concepts

@ 700 kW Fort S1ll Microgrid Project

- Network renewable and DGs, carbon footprint reduction, and serve critical
mission power requirements in a sustainable, reliable, and secure manner

@ 3 MW Santa Rita Cor. Facility Test Site

- Initial goal for this $11M facility was to reduce energy cost, store renewable
overproduction, shift loads to off-peak hours, improve grid reliability

@ IIT Perfect Power

- Sustainable power, withstand disasters, secure energy, lower cost for
customers, power system approach

o UWM/M-WERC Microgrid Facility

— High renewable penetration, multi-bus system, storage placement and
reduced size, CHP and EV systems
10
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Fort Sill Microgrid Conﬁguratlon

It is rated at 0.480 kV, 60 Hz and
630 kW.

It is connected to the utility grid
through a  0.48kV/13.2kV
transformer and a static switch

The generation in microgrid
includes:

(1) Two Natural gas generators
each rated at 190 kW,

(2) 30 kW Solar PV system
(3) 2.5 kW wind turbine

(4) 250kW  energy storage
system

The system includes various
motor loads and variable loads.
1.e. chillers, water pumps, air
COMPIessors.
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Fort sill microgrid configuration
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Research Objectives

Model a microgrid with high penetration of renewable
energy and assess power quality

Control and manage sources and energy storage within
the microgrid to regulate voltage and frequency

Test and study microgrid components to create a
practical system model

S1ze the capacity for renewable and non-renewable
sources and storage to meet the demand

Find best locations for energy storage to control voltage
and frequency

Design controls for the components and system to
manage seamless 1slanding and reconnection

Implement a microgrid based on emulated sources and
energy storage
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Microgrids with High Penetration of Renewables

@ High penetration of Renewable Energy Sources (RES),
within microgrid 1s important to meet the energy surety
requirements

@ Renewable energy sources such as wind and solar are
intermittent unlike fossil fuel based sources

@ The problem is to manage the stability, demands, and
power quality of the load while extracting maximum
energy from the renewable sources

@ The renewable sources are mostly connected to an
inverter and this allows fast and flexible interface
between the loads and the source.

@ Performance of microgrids 1s ensured by proper sizing of
capacity for projected demand

@ There are no standard methods of sizing sources based on
measurable indexes
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@ To study microgrids, we have adapted a standard IEEE 34-
bus distribution system as a microgrid.

@ The original system was 25kV, 60Hz, and 12MVA. We
scaled 1t to 12kV, 6MVA.

@ The original system was connected to the grid with no DG
and with constant active/reactive power loads and constant
distributed impedance loads.

We added DG and renewables to the 34 bus system
We provided the capability to add loads and load profiles

Enabling islanding allowed us to model microgrids

e © © ¢©

This system can be used as a benchmark for microgird
controls, sizing and tests
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Microgrid Configuration — DG added

@ (1) DG and energy storage are added (i11) Loads are scaled,
(111) Distribution lines are scaled, and (1v) Transfer switch 1s

added.
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34-Bus System with DG

Q. Fu, L. Montoya, A. Solanki, A. Nasiri, V. Bhavaraju, and D. Yu, "Microgrid Generation Capacity Design with Renewables and Energy
Storage Addressing Power Quality and Surety," IEEE Transactions on Smart Grid, vol. 3, no. 4, pp. 2019-2027, 2012.
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Microgrid Components

@ Loads: variable and fixed loads, impedance loads,

motor loads

@ Solar PV
@ Wind turbine
@ Natural gas (NG) generator

@ Zinc-bromide battery

-

>

)

Li-10n battery
Lithium-ion capacitor

Inverters

@ Controls
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Microgrid Configuration - Load Pfoﬁles

The system includes a total of 53 loads, consisting of fixed and
variable PQ loads and fixed impedance loads. The load profile for
a single load at bus 848 and total microgrid load are shown

below. The peak load occurs at 7PM and it 1s 1420kW. The
minimum load occurs at 2AM and 1t 1s 1120kW.,
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Load power profile for a single day, (a) typical load profile on bus 848 and (b) total
load for the microgrid.
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Microgrid Source Models - PV and Wind

@ The solar PV system 1s modeled using solar irradiation
data from Solar Advisor Module (SAM) for the city of
Milwaukee, WI. All practical constraints are applied.

@ The wind turbine power profile 1s also modeled using
measured wind speed data near the city of Milwaukee WI.

Power profile for
a 250kW PV

____________________________________

———————————————————————————————————————————————————————————————————

____________________________________________________________________
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0 2 4 6 8 10 12 14 16 18 20 22 24
Time (Hours)

The power profile of a 250kW solar PV plant and 750kW wind turbine.
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Microgrid Source Models — NG
Generator

@ One of the IEEE recommended exciter type systems have been modeled for
a 1.5MVA generator. Practical parameters of the machine are applied to
properly model the transient and step responses.

a0 = Frequancy
’s Ke £3.0
v, < Ky o £2.0 4
X ® 51.0 4
sKp
Ve 1+5Tp 50.0 4
9.0 4
8.0 -
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AC8B Exciter VT.IT -\"'_I'T'ﬂﬁ |
1.20
Speed ref Ferminal Voltage and 1.10 4
l Current Measurement _ : - —
Go;':no'r and_ clm'ema'l { } : My . V
Engine U 3 phase
y Breaker 0.80 -
Speed Measurement Iif,:; 070
50 100 150 200 250 300 350 400 450 500
Basic block diagram of an NG generator Simulation results for the diesel generator when
connected to a gird/microgrid. load steps are applied at 10s and 20s.
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NG Generator Test Results

Figure shows the test result for a 100kW generator for different
step changes 1n active load.
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It is a flow battery with large ; 'i%ié';l

cycle life, and good power and g Tgm i,
energy density. It is suitable for (1]
grid applications.

Stack Assembly and electrolyte flow in a Zinc-Bromide energy storage system.

Anode: /n? + (+) 2e- <> Zn ZnBr, + H,0
Cathode:  2Br- <> Br, + 2e-
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Zinc Energy Storage System (ZESS) Testlng

Charging

Discharging

Time (min)
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Charging

‘Discharging
T
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RinternaI(SOC)

Iself discharge(SOC)

OCV(SOC)

Rself discharge

Testing and modeling of
Zinc Bromide battery.
Components in the model
are non-linear functions of
SOC and temperature.

E. Manla, A. Nasiri, C. Rentel, and Michael Hughes, "Modeling of Zinc-Bromide Energy Storage for Vehicular Applications", IEEE

Transactions on Industrial Electronics, vol. 57, no. 2, pp. 624-632, 2010.

Power Electronics and Electric Drives Laboratory

Terminal

\/oltage
vVailage

22




UNIVERSITYof WISCONSIN

UV\MII.WAUI(EE

Li-Ion Battery Test SystenT

@ NI CompactRIO and Labview are used for automated test

procedure and data acquisition.

Battery cell test setup.

322V Li-ion battery module
under testing.
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Li-Ion Battery Testing =

1C Discharging
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Voltage and current traces for battery discharging

3 4 5
Number of Samples

voltage (above) and current (below).
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Voc vs SOC
1C Discharging

Voltage [V]

‘ == | C Discharging ‘
| | |

00 90 8 70 60 50 40 30 20 10
SOC [%]

o

Battery vs. SOC traces at various discharging

currents.

Battery testing has been
conducted at various
current rating and ambient
temperatures. Parameters
are functions of OCV and
temperature.
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Comprehensive Li-Ion Battery Model

@ A comprehensive battery model, combining:
— Transient capabilities of Thevenin-based models
— AC features of impedance-based models
— Runtime information of runtime-based models.

Left side : Battery Lifetime Voltage-Current Characteristics
o A capacitor (C¢,py.i) and a | Ve - R Rimors  Rommr
current source, model: | ! °
— Capacity, f§ il _m<¢> § <+> Viu
- 80C 1° & 5
— Runtime of the battery _ =
Right side:

@ The RC network, models the transient response.

@ Voltage-controlled voltage source is used to model the nonlinear relation
between OCV and SOC.

S. A. Hamidi, L. Weber, and A. Nasiri, “EV Charging Station Integrating Renewable Energy and Second-Life Battery," in Proc.
International Conference on Renewable Energy Research and Applications (ICRERA), Oct. 2013, Madrid, Spain.
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EDLC Lithium Ion Capacitor
Output ——>¢ +

It offers very high power
density and efficiency. It is
suitable for systems that

require large cycle life. A

C- C+ C- C+
— A C1 _ Cl N Cl —AFYWA— typical cell is rated at
cell - +

2200F, 3V, and 220A.
C-=C+=C LIC’s Capacitance is twice a@ C->>C+ ’ ’

Ccell = 1/2C Ccell = C+
100 L

Lilon Battery
Ni H Battery
Lead-acid Battery | Lithium Ion Capacit(
10

e
Ragone plot showing a comparison of

energy and power density. 1 CD

10 100 1000 10000
Power Density / W kg

Activated  Electrolyte Activated Li-doped  plectrolyte Activated
carbon carbon carbon carbon

1000

Concept of Lithium-ion Capacitor.

-

Energy Density / Wh kg1
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Ultracapacitor Testing

Picture of the test setup and waveforms
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Ultracapacitor Model
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Developed model for the
1100F LIC for integration
with renewable energy.
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C,(OCV)=a-OCV* +b-OCV®+¢-OCV>+d-OCV +e

Where:

a=745.93 B

b =9975.79 Ca=30.6F

¢ =-48536.01 R, =79.9 mQ)
d=102318.04  R_=5339mQ

e =-7/8004.95
Csa Rsa i1

Icharge i2 [charge
. - l\/\/\, -~ - °
S
s Rs +
1 o
(2]
2
o
R
e S Terminal
Co== 38
&5 Voltage
2
L

E. Manla and A. Nasiri, "Modeling of Lithium-Ion Capacitors for Renewable Energy Integration", in Proc. IEEE Energy Conversion

Congress and Exposition, 2011.
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Inverter Average Modeling |

DC Bus Nominal Rated Inductor Transformer Grid Switching Filter
Voltage Power Current (L )u( ) Leakage Voltage Freq Capacitance
V) (kW) (A) S (nH) V) (kHz) (C) (uF)
300-500 500 1400 25 9 480 2-3 1600
de Ly R b n i i
a =0
N 3 b ' N ,m\ 7
Vde + id:__ i
1 TITIT3*% |

L 4%} 13

The schematic and a picture of the 500kW
grid connected voltage source inverter.
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Functions for Microgrid Controls

Inverter-based source active/reactive power control
NG generator or microturbine control

Voltage mode or current mode

Power sharing between sources

Frequency and voltage controls

Step changes in load

Transitions from grid-tie to island and vice versa
Source priority

Load management

Black start

¢ © © ¢ ¢ ¢ € ¢ ¢ ¢©
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@ Inverter responds almost

Controls for Storage Inverter

instantaneously to the

adjustment signals.

Q.r«—| Data

Adjustment controller has
to be smaller in order to
avoid injecting large
voltage and frequency

N i ________-

UV\MII.WAUKEE

---- Comm

transients.

Inverter tends to initially

pick up the majority of
any load steps.

LCL
Filter

If the controller tries to
pass the load to the
generators too quickly,
undesirable transients may
occur.
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WS
Microgrid
Connection

The block diagram of the controls for voltage and
frequency of storage inverter.
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Controls for NG Generator

E sh.pf+—
ISO communicated e b Comm
values are updated o
every 100mS while i
the measured values IR it e )
are updated every ey e
20mS N T T v il
L{{}fﬂv"'l— vms; - /J Field Voltage
[@j-‘}-if_ © femsesl \I ‘ l
et e GO L -le —
L faa Va }' fshatt | Connection

The block diagram of the “controls for voltage and
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@ The primary control is to adjust the active
and reactive power of all the sources to
regulate the system frequency and voltage.

@ The secondary control is to maximize the
power capture from the renewable energy

sources and minimize the energy delivered
by the NG generator.

59 595 60 6(;)!\6'1 Frequency (H2)
@ A droop control 1s designed for battery and . Battery
NG generator to coordinate the sources 1n

Power (p.u.)
|_\

NG
Generator

o
ul

order to regulate the system frequency. T _
. : : The active power droop
@ A proportional integrator (PI) controller 1s mechanism for diesel generator
designed to curtail the wind power when the  and battery in the microgrid.
frequency exceeds 60.8 Hz.
@ For the solar PV, the curtailment starts at
60.9 Hz.

Power Electronics and Electric Drives Laboratory
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Island Mode - Reactive Power Control

A droop control mechanism has been
defined for NG generator, solar PV and
battery to regulate the reactive power.

NG generator ceases to produce reactive
power when its terminal voltage reaches

1.05 p.u.

The battery inverter and solar PV
inverter will also provide reactive power
when their terminal voltages drop under
1 p.u.

The solar PV inverter absorbs reactive

[N
3

Diesel
Generator

o
a

Battery

Reactive Power (p.u.)

i t
0.95 0.975 1.025

1.05 Voltage(p.u.)

power to lower the voltage when it N

exceeds 1 p.u.

The reactive power of the wind The reactive power droop mechanism
generator 1s regulated using a PI for diesel generator, solar PV and
controller in order to prevent source battery in the microgrid.
contention.

34
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Constraints on P-(Q Controls

@ In steady state, the total delivered apparent power
must not exceed the rating of the converter/source.

@ To reduce the stress on the diodes of the inverter, the
reactive power generation 1s limited to 0.5 p.u. when
the active power of the sources 1s under 0.29 p.u. This
active power level 1s the border line for power factor

(PF) of 0.5.

@ When the voltage exceeds a certain value (e.g. 1.04
p.u.), reactive power 1s first absorbed to the limit and
then the real power 1s curtailed.

35
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Managed Renewable Power Proﬁles

Real Power delivered by PV
— — Reactive power delivered by PV

(T RS S L

z I
RN H
S offlhig
S 008 ol
2 | S RN I N
z
DO_ -------------------

__________

----------------------------

Time (Hours)

Active and reactive power delivered by 0.25MW
solar PV.

Active power from wind and PV
sources must be curtailed at some
instances to manage the voltage
profile.

Power Electronics and Electric Drives Laboratory

Power (MW or MVAR)
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T Real power delivered by Wind1
i__| — — Reactive power delivered by Wind1
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Active and reactive power delivered by one of

Power (MW or MVAR)

0.7
06

0.3

the 0.75MW wind turbines.

T T T T T
Real power delivered by storage
— — ' Reactive power delivered by storage

4 6 8 10 12 14 16 18 20 22 24
Time (Hours)

Total active and reactive power delivered by two

0.25MW battery storage systems.
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Resultant Voltage Profiles

L e e e I The voltage at all source and
108 f AN e ——— load buses are in the acceptable
Win'w AL DAt B :
5 L A ‘m“*eh.rj‘,g, _____ e A range. The frequency swings
: AR WYL # M Lo
I L T N lww down to 58.7Hz when wind 1s
$ 098 e e
T T v down.
el P P iy Voltage at Wind1 [{"" — P P -
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59l
585
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Q. Fu, A. Solanki, L. F. Montoya, A. Nasiri, V. Bhavaraju, D. Yu, T. Abdellah, "Managing Intermittent Renewables in a
Microgrid," in Proc. 2012 IEEE PES Innovative Smart Grid Technologies Conference, Washington D.C.
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Active Power (MW, Reactive Power(MWVAr)
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Active and reactive po\/ver of the solar
PV in grid connected mode.
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Active and reactive power of the wind turbine
on bus 840 in grid connected mode.
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Active and reactive p6iter delivered by the
grid to the system.

Active power of the wind has been curtailed 1n this mode as well to

mange the voltage profile.
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Microgrid Islanding
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Q. Fu, A. Solanki, A. Nasiri, V. Bhavaraju, T. Abdallah, and D. Yu, "Transition Management of Microgrids with High Penetration of
Renewable Energy," Forthcoming, IEEE Transactions on Smart Grid, Digital Identifier: 10.1109/TSG.2013.2286952, 2014.
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The shifting droop curve
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A shifting droop control is developed to minimize transients during reconnection.
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Waveforms of power delivered by grid,

natural gas generator and battery during
reconnection.
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Generation Capacity Sizing for Demand

@ The maximum load demand of the system 1s 1.42MW.

@ To size the NG generator and energy storage, it 1s
suggested that they should meet the total load demand
considering line losses, without renewable energy
sources.

@ Two energy storage systems with a total rating of 0.5MW
for two continuous hours are considered for the system.

@ The NG generator rating 1s selected at .SMVA
considering 0.4MW line loss to meet the total demand.

@ The ratings of the renewable sources are selected so that
their total capacity does not exceed the total system
demand.

41

Power Electronics and Electric Drives Laboratory




UNIVERSITYof WISCONSIN

UVWMILWAUKEE
=t

Power Quality Assessment - Results

Utilities use the power reliability indexes namely Total number of customer interruptions

. . SAIFI =
@ System Average Interruption Duration Index Total number of customers served
(SAIDI), . . | o
t t t t
e System Average Interruption Frequency Index SAIDI = um of all customer Inferruption durations
(SAIFI) Number of customers served
9

@ Customer Average Interruption Duration Index
(CAIDI) to evaluate the reliability of power CAIDI =
provided to their customers.

Sum of all customer interruption durations _ SAIDI

Total number of customer interruptions ~ SAIFI

Casel | Case?2 | Case 3
Power quality is evaluated for three cases,

@ Case-1 without regulator between buses 832 and SAIDI 3.95 0.91 0
852 and with storage element at bus 828, (hrs)

@ Case-2 with regulator and energy storage at bus SAIFI 166 796 0
o CAIDI 0.0196 | 0.0011 0

@ Case-3 without regulator and storage at bus 832 (hrs) : -

L. F. Montoya, Q. Fu, A. Solanki, A. Nasiri, V. Bhavaraju, D. Yu, T. Abdellah, "Generation Capacity Design for a
Microgrid for Measurable Power Quality Indexes," in Proc. 2012 IEEE PES Innovative Smart Grid Technologies

Conference, Washington D.C. 1

Power Electronics and Electric Drives Laboratory




UNIVERSITYof WISCONSIN

UWII.WAUI(EE

Schematic of Implemented Smart Feeder Test
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PGE Smart Feeder Implementatlon
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SMW microgrid
system that operates
in grid-tie, island,
and black start
modes.
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PGE HRZ Implementation Results

A screen shot of the control software, when two inverters, one in voltage
mode and one 1n current mode are paralleled working in grid-tie and
island modes. The sequence 1s: Synchronization, Grid-tie mode, and
Island mode.
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Implementation Demo ==
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Distribution System Support Using Networked Mlcrogrlds

@ The main objective of this project is to use microgrids to add intelligence and
real-time communications and controls to distribution systems. Coupling
microgrids provides benefits to the distribution system in terms of improved
voltage dynamics, frequency support, fault responses, reliability.
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@ Induction motor load . .
Configuration of the IEEE 123 bus test machine starting.

feeder with microgrds. 47
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UWM Microgrid Test Bed Facility
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@ It uses actual source hardware with controls modified for

microgrid compatibility
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UWM Microgrid Testbed Update =
e 12kW wind turbine 1s installed and connected,

cost: $104K.

* We have signed a contract for 100kW solar PV
system. Will be finished by Dec 15, 14, Cost
$235K.

* We are bidding the implementations of six panels
in the lab, cost $46K.

* We have purchased solar and battery inverters,
cost $65K.

* We have a winner for system switchgear, cost
$48K.
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UWM Microgrid Testbed Update =

* We are bidding generator and battery
installation, cost: ~$40K.

* We have purchased all parts for static switch
and are building 1t in house.

» Kohler has provided two 45kW natural gas
generators.

* Odyne has provided 144kWh Li-Ion batteries.
Valance is providing technical support. We are
communicating with batteries.
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UWM Microgrid Testbed Update =

* Rockwell has provided four 50kW drives for
active loads.

* LEM has provided current and voltage
transducers.

* Rockwell has provided PLLC and Ethernet
switch and expansion module.

» Have ordered NI Compact RIO for
measurement, controls, and monitoring.

 UWM graduate school and CEAS have provided
$310K of support.
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Planned UWM Microgrid Activities

e Commission 100kW solar PV system, by Dec 14
* Implement and test Static Switch, by Feb 15

* Install two 45kW NG generator, by Nov 14

* Install switchgear, by Dec 14

* Connect building loads, by Feb 15

* Commission test facilities, by Mar 15

— Control, Data Acquisition, and Protection features
— Microgrid controls, islanding, and reconnection

* Launch 1nitial project work to test/exercise equipment
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Research Projects Using Testbeds ——

* Delivery of frequency and voltage support to grid
distribution system

* Energy storage sizing and placement 1n a microgrid
to mitigate intermittency of RE sources

* Development of promising new types of energy
storage for microgrid and grid applications

 Innovative inverter topologies and controls for
microgrid components

* Development of technology for coupling large
numbers of microgrids

» Cybersecurity for microgrids and grid
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Advanced Energy Systems Center
(a) | Research () ) e D“’*"Eur
= ® Workforce - Laboratories | | S
\\ Employer Skills Buildin istrib. generation |+ Technology scale u
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I UW-Mad UWM

— —

e An ambitious proposal was submltted to the UW System in October to
establish a new multi-campus center focused on advanced energy
systems, including DER and microgrids

» Center spanned a wide range from research to workforce development,
continuing education, and entrepreneurship

« M-WERC was a key partner in the proposed center

» Although proposal was not successful, other opportunities are being
sought to pursue key concepts
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Participating Industry Partners

Contributing Participants

v Rockwell Automation v" Kohler

v" Johnson Controls v’ AEP

v" Regal Beloit - Marathon v Sauer-Danfoss
v LEM v Odyne

v Mercury Marine v" Eaton Corp.

New Partners are Invited to Join Team
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